EP(1) and EP(4) receptors mediate prostaglandin E(2) actions in the microcirculation of rat kidney.
نویسندگان
چکیده
Vasodilator prostaglandin PGE(2) protects the kidney from excessive vasoconstriction during contraction of extracellular fluid volume and pathophysiological states. However, it is not yet clear which of the four known E-prostanoid (EP) receptors is localized to resistance vessels and mediates net vasodilation. In the present study, we assessed the presence, signal transduction, and actions of EP receptor subtypes in preglomerular arterioles of Sprague-Dawley rat kidneys. RNA encoding EP(1), an EP(1)-variant, and EP(4) receptors was identified by RT-PCR in freshly isolated preglomerular microvessels; cultured preglomerular vascular smooth muscle cells (VSMC) had EP(1)-variant and EP(4) RNA but lacked EP(1). EP(2) and EP(3) receptors were undetectable in both vascular preparations. In studies of cell signaling, stimulation of cAMP by various receptor agonists is consistent with primary actions of PGE(2) on the EP(4) receptor, with no inhibition of cAMP by EP(1) receptors. Studies of cytosolic calcium concentration in cultured renal VSMC support an inhibitory role of EP(4) during ANG II stimulation. In vivo renal blood flow (RBF) studies indicate that the EP(4) receptor is the primary receptor mediating sustained renal vasodilation produced by PGE(2), whereas the EP(1) receptor elicits transient vasoconstriction. The EP(1)-variant receptor does not appear to possess any cAMP or cytosolic calcium signaling capable of affecting RBF. Collectively, these studies demonstrate that the EP(4) receptor is the major receptor in preglomerular VSMC. EP(4) mediates PGE(2)-induced vasodilation in the rat kidney and signals through G(s) proteins to stimulate cAMP and inhibit cytosolic calcium concentration.
منابع مشابه
Biphasic actions of prostaglandin E(2) on the renal afferent arteriole : role of EP(3) and EP(4) receptors.
Prostaglandin (PG) E(2) is an important modulator of the actions of angiotensin (Ang) II. In the present study, we investigated the renal microvascular actions of PGE(2) and the EP receptor subtypes involved. Ibuprofen potentiated Ang II-induced vasoconstriction in in vitro perfused normal rat kidneys and augmented afferent arteriolar, but not efferent arteriolar, responses in the hydronephroti...
متن کاملCharacterization of murine vasopressor and vasodepressor prostaglandin E(2) receptors.
Four E-prostanoid (EP) receptors, designated EP(1), EP(2), EP(3), and EP(4), mediate the cellular effects of prostaglandin E(2) (PGE(2)). The present studies pharmacologically characterize the vasopressor and vasodepressor EP receptors in wild-type mice (EP(2)(+/+) mice) and mice with targeted disruption of the EP(2) receptor (EP(2)(-/-) mice). Mean arterial pressure (MAP) was measured via a ca...
متن کاملProstaglandin E receptors and the kidney.
Prostaglandin E(2) is a major renal cyclooxygenase metabolite of arachidonate and interacts with four G protein-coupled E-prostanoid receptors designated EP(1), EP(2), EP(3), and EP(4). Through these receptors, PGE(2) modulates renal hemodynamics and salt and water excretion. The intrarenal distribution and function of EP receptors have been partially characterized, and each receptor has a dist...
متن کاملGastric mucosal protection against ethanol by EP2 and EP4 signaling through the inhibition of leukotriene C4 production.
Prostaglandin (PG)E derivatives are widely used for treating gastric mucosal injury. PGE receptors are classified into four subtypes, EP(1), EP(2), EP(3), and EP(4). We have tested which EP receptor subtypes participate in gastric mucosal protection against ethanol-induced gastric mucosal injury and clarified the mechanisms of such protection. The gastric mucosa of anesthetized rats was perfuse...
متن کاملEP₃ receptors mediate PGE₂-induced hypothalamic paraventricular nucleus excitation and sympathetic activation.
Prostaglandin E(2) (PGE(2)), an important mediator of the inflammatory response, acts centrally to elicit sympathetic excitation. PGE(2) acts on at least four E-class prostanoid (EP) receptors known as EP(1), EP(2), EP(3), and EP(4). Since PGE(2) production within the brain is ubiquitous, the different functions of PGE(2) depend on the expression of these prostanoid receptors in specific brain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 279 4 شماره
صفحات -
تاریخ انتشار 2000